Teriparatide increases bone mass primarily through remodeling of older or damaged bone and abundant replacement with new mineralizing bone. This post hoc analysis investigated whether dual-energy X-ray absorptiometric (DXA) areal bone mineral density (aBMD) measurement adequately reflects changes of mineral and organic matrix content in cortical and trabecular bone.
Paired biopsies and aBMD measurements were obtained before and at end of 2 years of teriparatide treatment from postmenopausal women with osteoporosis who were either alendronate pretreated (mean, 57.5 months) or osteoporosis-treatment naive. Biopsies were assessed by micro-computed tomography (mu CT) to calculate mean cortical width (Ct.Wi), cortical area (Ct.Ar), and trabecular bone volume fraction (BV/TV).
Fourier transformed infrared imaging (pixel size similar to 6.3 x 6.3 mu m(2)) was utilized to calculate mineral and organic matrix density (mean absorption/pixel), as well as total mineral and organic contents of cortical and cancellous compartments (sum of all pixels in the compartment). Effect of pretreatment over time was analyzed using mixed model repeated measures. mu CT derived Ct.Wi and BV/TV increased, accompanied by similar increases in the overall mineral contents of their respective bone compartments.
Mineral density did not change. Marked increases in the total content of both mineral and organic matrix associated with volumetric growth in both compartments consistently exceeded those of aBMD.
Increases in organic matrix exceeded increases in mineral content in both cortical and trabecular compartments. For percent changes, only change in Ct.Wi correlated to change in femoral neck aBMD (r = .38, p = 0.043), whereas no other significant correlations of Ct.Wi or BV/TV with lumbar spine, total hip, or femoral neck aBMD were demonstrable.
These data indicate that 2 years of teriparatide treatment leads to an increased bone organic matrix and mineral content in the iliac crest. The magnitude of these increases in the iliac crest were not detected with conventional aBMD measurements at other skeletal sites.