Existence, uniqueness and continuous dependence results together with maximum principles represent key tools in the analysis of lattice reaction-diffusion equations. In this paper, we study these questions in full generality by considering nonautonomous reaction functions, possibly nonsymmetric diffusion and continuous, discrete or mixed time.
First, we prove the local existence and global uniqueness of bounded solutions, as well as the continuous dependence of solutions on the underlying time structure and on initial conditions. Next, we obtain the weak maximum principle which enables us to get the global existence of solutions.
Finally, we provide the strong maximum principle which exhibits an interesting dependence on the time structure. Our results are illustrated by the autonomous Fisher and Nagumo lattice equations and a nonautonomous logistic population model with a variable carrying capacity.