(Quasi-)Poisson-Lie T-duality of string effective actions is described in the framework of generalized geometry of Courant algebroids. The approach is based on a generalization of Riemannian geometry in the context of Courant algebroids, including a proper version of a Levi-Civita connection.
In our approach, the dilaton field is encoded in a Levi-Civita connection and its form is determined by the Courant algebroid geometry. Explicit examples of background solutions are provided using the approach developed in the paper.