Charles Explorer logo
🇬🇧

Renaissance: benchmarking suite for parallel applications on the JVM

Publication at Faculty of Mathematics and Physics |
2019

Abstract

Established benchmark suites for the Java Virtual Machine (JVM), such as DaCapo, ScalaBench, and SPECjvm2008, lack workloads that take advantage of the parallel programming abstractions and concurrency primitives offered by the JVM and the Java Class Library. However, such workloads are fundamental for understanding the way in which modern applications and data-processing frameworks use the JVM's concurrency features, and for validating new just-in-time (JIT) compiler optimizations that enable more efficient execution of such workloads.

We present Renaissance, a new benchmark suite composed of modern, real-world, concurrent, and object-oriented workloads that exercise various concurrency primitives of the JVM. We show that the use of concurrency primitives in these workloads reveals optimization opportunities that were not visible with the existing workloads.

We use Renaissance to compare performance of two state-of-the-art, production-quality JIT compilers (HotSpot C2 and Graal), and show that the performance differences are more significant than on existing suites such as DaCapo and SPECjvm2008. We also use Renaissance to expose four new compiler optimizations, and we analyze the behavior of several existing ones.

We use Renaissance to compare performance of two state-of-the-art, production-quality JIT compilers (HotSpot C2 and Graal), and show that the performance differences are more significant than on existing suites such as DaCapo and SPECjvm2008. We also use Renaissance to expose four new compiler optimizations, and we analyze the behavior of several existing ones.