Charles Explorer logo
🇬🇧

The characterization of bacterial communities of oropharynx microbiota in healthy children by combining culture techniques and sequencing of the 16S rRNA gene

Publication at Second Faculty of Medicine |
2020

Abstract

The high incidence of bacterial respiratory infections has led to a focus on evaluating the human respiratory microbiome. Studies based on culture-based and molecular methods have shown an increase in the bacterial community that includes the bacterial phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria in the oropharynx of healthy individuals.

Therefore, recognizing this microbial compound and subsequently identifying those carriers of specific pathogens can be of great help in predicting future infections and their control. In this prospective study, we sought to characterize the bacterial communities of the respiratory microbiome in healthy children aged between 3 and 6 years old by combining both cultural techniques and sequencing of the 16S rRNA gene.

Seventy-seven oropharynx samples using Dacron swabs were collected from 77 healthy children in the kindergartens of Ilam, Iran. Bacterial identification was performed by phenotypic methods and in house developed PCR-based sequencing (the V1-V9 hypervariable region of the bacterial 16S ribosomal RNA gene).

In total, 346 bacterial isolates were characterized based on phenotypic and sequencing-based molecular methods. The 3 most predominant phyla were Firmicutes (74%), Proteobacteria (22%), and Actinobacteria (4%).

At the level of the genus, Staphylococci (coagulase-positive and coagulase-negative) and Streptococci were dominant. Also, the most commonly identified potentially pathogenic colonisers were S. aureus (75%), Enterobacteriaceae spp. (40.1%), and A. baumannii (15.6%).

The present study identified 3 phyla and 9 family of bacteria in the oropharyngeal microbiome. Remarkably, the presence of potential pathogenic bacteria in the nasopharynx of healthy children can predispose them to infectious diseases, and also frequent exposure to human respiratory bacterial pathogens are further risk factors. (C) 2020 Elsevier Ltd