Charles Explorer logo
🇬🇧

A cost-efficient approach for simultaneous scanning electrochemical microscopy and scanning ion conductance microscopy

Publication at Faculty of Science |
2020

Abstract

A novel and cost-efficient probe fabrication method yielding probes for performing simultaneous scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) is presented. Coupling both techniques allows distinguishing topographical and electrochemical activity information obtained by SECM.

Probes were prepared by deposition of photoresist onto platinum-coated, pulled fused silica capillaries, which resulted in a pipette probe with an integrated ring ultramicroelectrode. The fabricated probes were characterized by means of cyclic voltammetry and scanning electron microscopy.

The applicability of probes was demonstrated by measuring and distinguishing topography and electrochemical activity of a model substrate. In addition, porous boron-doped diamond samples were investigated via simultaneously performed SECM and SICM.