For endohedral metallofullerenes (EMFs), it has been well established that the cage shape and size should match those of the endohedral cluster. As a result, sufficient cluster-cage interaction can be achieved, which is essential for mutual stabilization.
Nevertheless, how a small endohedral cluster nests in a giant fullerene has been less explored. Herein, we report a pair of large oxide-cluster fullerene (OCF) isomers, denoted as Ho2O@C-92-I and -II.
Crystallographic studies reveal that major isomer-I possesses a D-3(85)-C-92 cage with a highly stretched Ho2O cluster inside, which contributes to achieving regular metal-cage contacts. Density functional theory (DFT) computations also reveal the predominant abundance of the D-3(85) isomer relative to the other two possible minor species including C-1(67) and C-2(64) isomers.
Moreover, electrochemical (EC) studies verify that the isomers exhibit almost identical redox behaviors, indicating their similar cage structures. On the basis of the remarkable topological similarity of D-3(85) and C-1(67) isomers, isomer-II is likely to be Ho2O@C-1(67)-C-92, though it remains to be confirmed.
Our studies thus provide new insights into the cage-cluster interplay and cage isomerization, both contributing to a better understanding of large EMFs.