Pseudopeptidic poly(2-oxazoline)s are a special class of bio-inspired polymers with multiple applications, especially in the field of polymer therapeutics. Unsurprisingly, poly(2-oxazoline) has been extensively studied in recent decades, and pioneering studies on these polymers have shown that nonionic, hydrophilic and thermo-responsive poly(2-oxazoline)s are comparable to and sometimes even more advantageous than poly( ethylene glycol) for biomedical applications.
Considering their applications in the biomedical field, stimuli-responsive polymer materials open new opportunities for in vivo applications such as on-demand drug delivery, tissue repairing, biosensing and smart coatings, among others. In this context, this article is a comprehensive review of recent advances in stimuli-responsive polymers/interfaces consisting of poly(2-oxazoline)-based "smart" homopolymer and ( co )polymer materials responsive to different single stimulus or to multiple stimuli.
In particular, we focus on the synthesis (design strategies), "smart" solution properties (tuning of cloud points), self-assembly (tuning of nanostructures), surface chemistry (surface grafting strategies, antifouling properties, responsive behaviors) and possible biomedical applications of different stimulus-responsive materials based on functionalized poly(2-oxazoline). Accordingly, this review can be used as a benchmark for biopolymer researchers, thereby helping them design innovative functional poly(2-oxazoline)-based "smart" bio-inspired materials for novel applications by highlighting key research gaps and future research avenues in this dynamic and highly relevant field of research.