Charles Explorer logo
🇨🇿

A Tutte polynomial for maps II: The non-orientable case

Publikace na Matematicko-fyzikální fakulta |
2020

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

We construct a new polynomial invariant of maps (graphs embedded in a closed surface, orientable or non-orientable), which contains as specializations the Krushkal polynomial, the Bollobas-Riordan polynomial, the Las Vergnas polynomial, and their extensions to non-orientable surfaces, and hence in particular the Tutte polynomial. Other evaluations include the number of local flows and local tensions taking non-identity values in a given finite group.