Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk-silicate Earth's (BSE) radiogenic power also places constraints on overall BSE composition.
Geoneutrino detection is a direct measure of the Earth's decay rate of Th and U. The geoneutrino signal has contributions from the local (similar to 40%) and global (similar to 35%) continental lithosphere and the underlying inaccessible mantle (similar to 25%).
Geophysical models are combined with geochemical data sets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods.
Estimated total signal uncertainties are on the order of similar to 20%, proportionally with geophysical and geochemical inputs contributing similar to 30% and similar to 70%, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to similar to 15%.
Similarly, we see no significant difference between calculated layer abundances and bulk crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as 7 +/- 2 TW, which includes an increase of 1 TW in uncertainty relative to previous studies.
Combination of our predicted lithospheric signal with measured signals yield an estimated BSE heat production of 21.5 +/- 10.4 TW. Future improvements, including uncertainty attribution and near-field modeling, are discussed.