Charles Explorer logo
🇨🇿

Matrices of Optimal Tree-Depth and Row-Invariant Parameterized Algorithm for Integer Programming

Publikace na Matematicko-fyzikální fakulta |
2020

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

A long line of research on fixed parameter tractability of integer programming culminated with showing that integer programs with n variables and a constraint matrix with tree-depth d and largest entry Δ are solvable in time g(d,Δ) poly(n) for some function g, i.e., fixed parameter tractable when parameterized by tree-depth d and Δ. However, the tree-depth of a constraint matrix depends on the positions of its non-zero entries and thus does not reflect its geometric structure.

In particular, tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program can be equivalent to another with a smaller dual tree-depth. We prove that the branch-depth of the matroid defined by the columns of the constraint matrix is equal to the minimum tree-depth of a row-equivalent matrix.

We also design a fixed parameter algorithm parameterized by an integer d and the entry complexity of an input matrix that either outputs a matrix with the smallest dual tree-depth that is row-equivalent to the input matrix or outputs that there is no matrix with dual tree-depth at most d that is row-equivalent to the input matrix. Finally, we use these results to obtain a fixed parameter algorithm for integer programming parameterized by the branch-depth of the input constraint matrix and the entry complexity.

The parameterization by branch-depth cannot be replaced by the more permissive notion of branch-width.