Charles Explorer logo
🇨🇿

An Empirical Investigation of Structured Output Modeling for Graph-based Neural Dependency Parsing

Publikace

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

In this paper, we investigate the aspect of structured output modeling for the state-of-the-art graph-based neural dependency parser (Dozat and Manning, 2017). With evaluations on 14 treebanks, we empirically show that global output-structured models can generally obtain better performance, especially on the metric of sentence-level Complete Match.

However, probably because neural models already learn good global views of the inputs, the improvement brought by structured output modeling is modest.