Charles Explorer logo
🇨🇿

Simplicity of the automorphism groups of generalised metric spaces

Publikace na Matematicko-fyzikální fakulta |
2021

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Tent and Ziegler proved that the automorphism group of the Urysohn sphere is simple and that the automorphism group of the Urysohn space is simple modulo bounded automorphisms. A key component of their proof is the definition of a stationary independence relation (SIR).

In this paper we prove that the existence of a SIR satisfying some extra axioms is enough to prove simplicity of the automorphism group of a countable structure. The extra axioms are chosen with applications in mind, namely homogeneous structures which admit a "metric-like amalgamation", for example all primitive 3-constrained metrically homogeneous graphs of finite diameter from Cherlin's list. (C) 2021 Elsevier Inc.

All rights reserved.