Charles Explorer logo
🇬🇧

Analysis of the multiplicative Schwarz method for matrices with a special block structure

Publication at Faculty of Mathematics and Physics |
2021

Abstract

We analyze the convergence of the (algebraic) multiplicative Schwarz method applied to linear algebraic systems with matrices having a special block structure that arises, for example, when a (partial) differential equation is posed and discretized on a two-dimensional domain that consists of two subdomains with an overlap. This is a basic situation in the context of domain decomposition methods.

Our analysis is based on the algebraic structure of the Schwarz iteration matrices, and we derive error bounds that are based on the block diagonal dominance of the given system matrix. Our analysis does not assume that the system matrix is symmetric (positive definite), or has the M-or H-matrix property.

Our approach is motivated by, and significantly generalizes, an analysis for a special one-dimensional model problem of Echeverria et al. given in [Electron. Trans.

Numer. Anal., 48 (2018), pp. 40-62].