The discovery of two-dimensional (2D) magnetic materials provides an ideal testbed for manipulating the magnetic properties at the atomically thin and 2D limit. This review gives recent progress in the emergent 2D magnets and heterostructures, focusing on the theory side.
We summarize different theoretical models, ranging from the atomic to micrometer-scale, used to describe magnetic orders. Then, the current strategies for tuning magnetism in 2D materials are further discussed, such as electric field, magnetic field, strain, optics, chemical functionalization, and spin-orbit engineering.
Finally, we conclude with the future challenges and opportunities for 2D magnetism.