Long-term perspectives on disturbance dynamics are important for the conservation of protected areas, yet restoration and conservation strategies in the Bohemian-Bavarian Forest Mountains do not consider the long-term role and patterns of forest fire, which is still deemed a negligible ecosystem disturbance in Central Europe. The scarcity of macroscopic charcoal studies in this area has likely hampered a complete understanding of local fire regime dynamics and its legacies in the present forest structure and composition.
Here we used macroscopic charcoal (number, area and morphology of charred particles) and pollen analysis to investigate high resolution spatial and temporal patterns in Holocene fire regimes in the Bavarian-Bohemian Forest. We explored the relationship between changing forest composition dynamics and the influence topography had on spatial patterns of biomass burning.
For this, we selected three lacustrine sites (two new, one published), located along a 30 km longitudinal transect within the studied area, at similar elevations in the mixed forest belt, with opposite (north vs. south) aspects. Results showed similar changes in biomass burning, fire frequency and peak magnitude at all sites, with a maximum during the early Holocene when fire resistant taxa (Pinus and Betula) dominated.
Fire frequency decreased by half with the expansion of more fire-sensitive taxa (e.g., Picea and Fagus) during the mid-Holocene and reached a second maximum in the late Holocene, parallel with sustained increases in anthropogenic pollen indicators.