Charles Explorer logo
🇬🇧

Helicity dependent photoresistance measurement vs. beam-shift thermal gradient

Publication at Faculty of Mathematics and Physics |
2022

Abstract

Many recent studies have explored the response of magnetic systems to circularly polarised light. To achieve this, typically experiments use a birefringent crystal.

Here, Yang et al show that any small error in the alignment of the crystal can result in a beam shift, and this shift can lead to spurious signals similar yet unrelated to the electron spin. Optical detection techniques are among the most powerful methods used to characterize spintronic phenomena.

The spin orientation can affect the light polarization, which, by the reciprocal mechanism, can modify the spin density. Numerous recent experiments, report local changes in the spin density induced by a circularly polarized focused laser beam.

These effects are typically probed electrically, by detecting the variations of the photoresistance or photocurrent associated to the reversal of the light helicity. Here we show that in general, when the light helicity is modified, the beam profile is slightly altered, and the barycenter of the laser spot is displaced.

Consequently, the temperature gradients produced by the laser heating will be modulated, producing thermo-electric signals that alternate in phase with the light polarization. These unintended signals, having no connection with the electron spin, appear under the same experimental conditions and can be easily misinterpreted.

We show how this contribution can be experimentally assessed and removed from the measured data. We find that even when the beam profile is optimized, this effect is large, and completely overshadows the spin related signals in all the materials and experimental conditions that we have tested.