Charles Explorer logo
🇬🇧

Variability in mycorrhizal status of plant species is much larger within than between plots in grassland and coastal habitats

Publication at Faculty of Science |
2022

Abstract

Community-level studies linking plant mycorrhizal status to environment usually do not account for within-plot mycorrhizal status variability; thus, patterns of plant mycorrhizal status diversity are largely unknown. Here, we assessed the relative importance of within- and between-plot variability components in mycorrhizal status and examined how plant mycorrhizal status diversity is related to soil nutrient availability.

We hypothesised larger between-plot variability in mycorrhizal status and higher plant mycorrhizal status diversity in P-poor soils. To test these hypotheses, we used plant phylogenies, vegetation, soil and plant mycorrhizal status data from Czech semi-natural grasslands and Scottish coastal habitats.

We divided plant mycorrhizal status diversity into divergence and evenness and tested their relations to soil P, K, Ca and Mg. Within-plot variability component of mycorrhizal status was always, on average, at least 2.2 times larger than between-plot variability in our datasets.

Plant mycorrhizal status divergence was positively related to Ca (in both datasets) and Mg (only in grasslands and when accounting for phylogeny). In grasslands, the relationship between Mg and plant mycorrhizal status evenness was negative when accounting for phylogeny, while it was positive when not accounting for phylogeny.

Plant mycorrhizal status diversity was not linked to P and its relation to K was inconsistent. Our results suggest that high Ca in the soil can promote coexistence of mycorrhizal, facultatively mycorrhizal and non-mycorrhizal plant species.

We encourage future studies to also focus on within-plot variability in mycorrhizal status, because it appears to be highly relevant in herbaceous systems.