Earth's long-term climate has been profoundly influenced by the episodic assembly and breakup of supercontinents at intervals of ca. 500 m.y. This reflects the cycle's impact on global sea level and atmospheric CO2 (and other greenhouse gases), the levels of which have fluctuated in response to variations in input from volcanism and removal (as carbonate) by the chemical weathering of silicate minerals.
Supercontinent amalgamation tends to coincide with climatic cooling due to drawdown of atmospheric CO2 through enhanced weathering of the orogens of supercontinent assembly and a thermally uplifted supercontinent. Conversely, breakup tends to coincide with increased atmospheric CO2 and global warming as the dispersing continental fragments cool and subside, and weathering decreases as sea level rises.
Supercontinents may also influence global climate through their causal connection to mantle plumes and large igneous provinces (LIPs) linked to their breakup. LIPs may amplify the warming trend of breakup by releasing greenhouse gases or may cause cooling and glaciation through sulfate aerosol release and drawdown of CO2 through the chemical weathering of LIP basalts.
Hence, Earth's long-term climatic trends likely reflect the cycle's influence on sea level, as evidenced by Pangea, whereas its influence on LIP volcanism may have orchestrated between Earth's various climatic states.