Raman scattering and its polarized extension, Raman optical activity (ROA), are commonly used for monitoring of molecular conformational equilibria in solutions. This is complicated for saccharides due to extensive motions of the hydroxyl groups and other molecular parts.
Standard interpretation procedures involving ab initio spectral simulations for a limited set of conformers are not adequate. In this study, a more general approach is proposed for the gluconic acid anion taken as a model compound, where quantum simulations of the spectra are directly coupled with molecular dynamics (MD) techniques.