Charles Explorer logo
🇬🇧

Backbone Colorings of Graphs with Bounded Degree

Publication at Faculty of Mathematics and Physics |
2010

Abstract

We study backbone colorings, a variation on classical vertex colorings: Given a graph G and a subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex k-coloring of G in which the colors assigned to adjacent vertices in H differ by at least 2. The minimal integer k for which such a coloring exists is called the backbone chromatic number of G.

We show that for a graph G of maximum degree Δ where the backbone graph is a d-degenerated subgraph of G, the backbone chromatic number is at most Δ+d+1 and moreover, in the case when the backbone graph being a matching we prove that the backbone chromatic number is at most Δ+1. We also present examples where these bounds are attained.